Catalogs¶
Medchem proposes a list of RDKit-based catalogs and Medchem-specific catalogs in order to quickly triage or flag compounds that contains molecular features provided by a given catalog.
The API is based on the RDKit catalog module rdkit.Chem.rdfiltercatalog
.
??? warning: Avoid blindly applying Medchem filters; you may miss valuable compounds or allow toxins for your specific applications.
import datamol as dm
import pandas as pd
import medchem as mc
from medchem.catalogs import NamedCatalogs
from medchem.catalogs import list_named_catalogs
from medchem.catalogs import catalog_from_smarts
Use the existing catalogs¶
List all the available catalogs.
list_named_catalogs()
['tox', 'pains', 'pains_a', 'pains_b', 'pains_c', 'nih', 'zinc', 'brenk', 'dundee', 'bms', 'glaxo', 'schembl', 'mlsmr', 'inpharmatica', 'lint', 'alarm_nmr', 'alphascreen', 'gst_hitters', 'his_hitters', 'luciferase', 'dnabinder', 'chelator', 'hitters', 'electrophilic', 'carcinogen', 'ld50_oral', 'reactive_unstable_toxic', 'skin', 'toxicophore', 'nibr', 'bredt', 'unstable_graph']
Retrieve a specific catalog as an RDKit catalog object.
catalog = NamedCatalogs.nibr()
catalog.GetNumEntries()
444
This catalog has 444 entries.
Now, let's load some molecules and check whether they match to the NIBR catalog.
data = dm.freesolv()
data = data.iloc[:50]
data["mol"] = data["smiles"].apply(dm.to_mol)
data["match_nibr_catalog"] = data["mol"].apply(catalog.HasMatch)
Pick a few to display.
rows = data.sample(n=8, random_state=19)
mols = rows["mol"].tolist()
legends = rows["match_nibr_catalog"].apply(lambda x: f"Match={x}").tolist()
dm.to_image(mols, legends=legends, mol_size=(300, 200))
It's possible to retrieve the entries that match a certain molecule.
mol = dm.to_mol("c1cc(c(cc1Cl)Cl)Cl")
mol
matches = catalog.GetMatches(mol)
[m.GetDescription() for m in matches]
['NIBR||