Functional API¶
The functional API of medchem
provides an easy and uniform way to access most
the medchem
alerts, filters and rules proposed in the other medchem
module.
import datamol as dm
import pandas as pd
import medchem as mc
Generic filters¶
All the filters can be applied on a list of SMILES or molecule objects. It's also possible to run the filtering in parallel in processes or threads.
The below examples contains molecules that are shown for illustration purposes.
macrocycle_filter
¶
Find molecules that do not infringe the strict maximum cycle size.
smiles_list = [
"Nc1noc2cc(-c3noc(C(F)(F)F)n3)ccc12",
"Nc1noc2cc(-c3noc(n3)C(Cl)(Cl)Cl)c(Cl)c(B3C=C3)c12",
"C[C@H](Nc1ncc(-c2noc(C(F)(F)F)n2)cc1Cl)c1ccncc1",
"NC1=NOC2=CC(C3=NOC(=N3)C(F)(F)F)=C3CCCCCCCC3=C12",
"Nc1noc2c(cc(cc12)C1NCO1)C1CCCCCCCCC1",
]
mols = [dm.to_mol(s) for s in smiles_list]
# Apply the filter
out = mc.functional.macrocycle_filter(mols, max_cycle_size=7, return_idx=False)
legends = [f"Pass the filter={o}" for o in out]
dm.to_image(mols, legends=legends, n_cols=5, mol_size=(250, 150))
atom_list_filter
¶
Find molecules without any atom from a set of unwanted atomic symbols and with all atoms in the set of wanted atom list.
smiles_list = [
"Nc1noc2cc(-c3noc(C(F)(F)F)n3)ccc12",
"Nc1noc2cc(-c3noc(n3)C(Cl)(Cl)Cl)c(Cl)c(B3C=C3)c12",
"C[C@H](Nc1ncc(-c2noc(C(F)(F)F)n2)cc1Cl)c1ccncc1",
"NC1=NOC2=CC(C3=NOC(=N3)C(F)(F)F)=C3CCCCCCCC3=C12",
"Nc1noc2c(cc(cc12)C1NCO1)C1CCCCCCCCC1",
]
mols = [dm.to_mol(s) for s in smiles_list]
# Apply the filter
out = mc.functional.atom_list_filter(mols, unwanted_atom_list=["B"], return_idx=False)
legends = [f"Pass the filter={o}" for o in out]
dm.to_image(mols, legends=legends, n_cols=5, mol_size=(250, 150))
ring_infraction_filter
¶
Find molecules that have a ring infraction filter. This filter focuses on checking for rings that are too small to have an heteroatom.
smiles_list = [
"Nc1noc2cc(-c3noc(C(F)(F)F)n3)ccc12",
"Nc1noc2cc(-c3noc(n3)C(Cl)(Cl)Cl)c(Cl)c(B3C=C3)c12",
"C[C@H](Nc1ncc(-c2noc(C(F)(F)F)n2)cc1Cl)c1ccncc1",
"NC1=NOC2=CC(C3=NOC(=N3)C(F)(F)F)=C3CCCCCCCC3=C12",
"Nc1noc2c(cc(cc12)C1NCO1)C1CCCCCCCCC1",
]
mols = [dm.to_mol(s) for s in smiles_list]
# Apply the filter
out = mc.functional.ring_infraction_filter(mols, hetcycle_min_size=4, return_idx=False)
legends = [f"Pass the filter={o}" for o in out]
dm.to_image(mols, legends=legends, n_cols=5, mol_size=(250, 150))
num_atom_filter
¶
Find molecules that match the number of atom range constraints.
smiles_list = [
"Nc1noc2cc(-c3noc(C(F)(F)F)n3)ccc12",
"Nc1noc2cc(-c3noc(n3)C(Cl)(Cl)Cl)c(Cl)c(B3C=C3)c12",
"C[C@H](Nc1ncc(-c2noc(C(F)(F)F)n2)cc1Cl)c1ccncc1",
"NC1=NOC2=CC(C3=NOC(=N3)C(F)(F)F)=C3CCCCCCCC3=C12",
"Nc1noc2c(cc(cc12)C1NCO1)C1CCCCCCCCC1",
]
mols = [dm.to_mol(s) for s in smiles_list]
# Apply the filter
out = mc.functional.num_atom_filter(mols, min_atoms=0, max_atoms=25, return_idx=False)
legends = [f"Pass the filter={o}" for o in out]
dm.to_image(mols, legends=legends, n_cols=5, mol_size=(250, 150))
num_stereo_center_filter
¶
Find molecules that match the number of stereo center constraints. In general, molecules with too many undefined stereo centers are not desirable.
smiles_list = [
"CC(C)(O)C(O)[C@H](O)C(O)CO", # fail, too many undefined stereocenter
"C1[C@H]([C@@H]([C@H]([C@H](O1)O)O)O)O", # fail, too many stereocenter
"C[C@@H]1CC[C@H]([C@@H](C1)O)C(C)C", # pass
]
mols = [dm.to_mol(s) for s in smiles_list]
# Apply the filter
out = mc.functional.num_stereo_center_filter(
mols,
max_stereo_centers=4,
max_undefined_stereo_centers=2,
return_idx=False,
)
legends = [f"Pass the filter={o}" for o in out]
dm.to_image(mols, legends=legends, n_cols=5, mol_size=(250, 150))
halogenicity_filter
¶
Find molecules that do not exceed halogen count threshold. This filter is useful for removing halogen biases in generated or enumerated chemical space during goal-directed optimization.
smiles_list = [
"Nc1noc2cc(-c3noc(C(F)(F)F)n3)ccc12",
"Nc1noc2cc(-c3noc(n3)C(Cl)(Cl)Cl)c(Cl)c(B3C=C3)c12",
"C[C@H](Nc1ncc(-c2noc(C(F)(F)F)n2)cc1Cl)c1ccncc1",
"NC1=NOC2=CC(C3=NOC(=N3)C(F)(F)F)=C3CCCCCCCC3=C12",
"Nc1noc2c(cc(cc12)C1NCO1)C1CCCCCCCCC1",
]
mols = [dm.to_mol(s) for s in smiles_list]
# Apply the filter
out = mc.functional.halogenicity_filter(mols, thresh_F=6, thresh_Br=3, thresh_Cl=3, return_idx=False)
legends = [f"Pass the filter={o}" for o in out]
dm.to_image(mols, legends=legends, n_cols=5, mol_size=(250, 150))
symmetry_filter
¶
Find molecules that are not symmetrical, given a symmetry threshold. This filter was designed to offset the symmetry issue in molecular design, where some models tend to generate highly symmetrical molecules due to substructure bias.
smiles_list = [
# symmetric mols
"O=C(O)c1cc(-n2ccnc2)cc(-n2ccnc2)c1",
"CC(C)(C)[C@@H]1COC(C2(C3=N[C@H](C(C)(C)C)CO3)Cc3ccccc3C2)=N1",
"c1ccc2oc(-c3ccc(-c4nc5ccccc5o4)s3)nc2c1",
"Cc1cc(O)c(C(c2ccc(Cl)cc2)c2c(O)cc(C)[nH]c2=O)c(=O)[nH]1",
# non-symmetric mols
"CCn1cc(S(=O)(=O)n2cc(Cl)cn2)cn1",
"Cc1cc(C)c(S(=O)(=O)Nc2cc(C)ccc2C)c(C)c1",
"c1ccc(CCC2CCN(CCC3COCCO3)CC2)cc1",
"CCCC1CCC([C@H]2CC[C@H](C(=O)O)CC2)CC1",
]
mols = [dm.to_mol(s) for s in smiles_list]
# Apply the filter
out = mc.functional.symmetry_filter(mols, symmetry_threshold=0.8, return_idx=False)
legends = [f"Pass the filter={o}" for o in out]
dm.to_image(mols, legends=legends, n_cols=4, mol_size=(250, 150))
Medchem API¶
alert_filter
¶
Filter a dataset of molecules, based on common structural alerts and specific rules.
data = dm.data.solubility()
data = data.sample(n=8, random_state=19)
data["mol"] = data["smiles"].apply(dm.to_mol)
# Apply the filter
out = mc.functional.alert_filter(
mols=data["mol"].tolist(),
alerts=["BMS"],
n_jobs=-1,
progress=True,
return_idx=False,
)
legends = [f"Pass the filter={o}" for o in out]
dm.to_image(data["mol"].tolist(), legends=legends, n_cols=4, mol_size=(250, 150))
Common alerts filtering: 0%| | 0/8 [00:00<?, ?it/s]
nibr_filter
¶
Filter a set of molecules based on the Novartis Institutes for BioMedical Research screening deck curation process.
data = dm.data.solubility()
data = data.sample(n=8, random_state=55)
data["mol"] = data["smiles"].apply(dm.to_mol)
# Apply the filter
out = mc.functional.nibr_filter(
mols=data["mol"].tolist(),
n_jobs=-1,
progress=True,
return_idx=False,
)
legends = [f"Pass the filter={o}" for o in out]
dm.to_image(data["mol"].tolist(), legends=legends, n_cols=4, mol_size=(250, 150))
NIBR filtering: 0%| | 0/8 [00:00<?, ?it/s]
data = dm.data.solubility()
data = data.sample(n=8, random_state=55)
data["mol"] = data["smiles"].apply(dm.to_mol)
# Apply the filter
out = mc.functional.catalog_filter(
mols=data["mol"].tolist(),
catalogs=["tox", "pains"],
n_jobs=-1,
progress=True,
return_idx=False,
)
legends = [f"Pass the filter={o}" for o in out]
dm.to_image(data["mol"].tolist(), legends=legends, n_cols=4, mol_size=(250, 150))
Filtering with catalogs: 0%| | 0/1 [00:00<?, ?it/s]
chemical_group_filter
¶
Filter a list of compounds according to a chemical group instance.
data = dm.data.freesolv()
data = data.iloc[:8]
data["mol"] = data["smiles"].apply(dm.to_mol)
cg = mc.groups.ChemicalGroup("common_organic_solvents")
# Apply the filter
out = mc.functional.chemical_group_filter(
mols=data["mol"].tolist(),
chemical_group=cg,
n_jobs=-1,
progress=True,
return_idx=False,
)
legends = [f"Pass the filter={o}" for o in out]
dm.to_image(data["mol"].tolist(), legends=legends, n_cols=4, mol_size=(250, 150))
Filtering with catalogs: 0%| | 0/1 [00:00<?, ?it/s]
rules_filter
¶
Filter a list of compounds according to a predefined set of rules.
data = dm.data.cdk2()
data = data.sample(n=8, random_state=19)
data["mol"] = data["smiles"].apply(dm.to_mol)
rfilter = mc.rules.RuleFilters(rule_list=["rule_of_five", "rule_of_oprea", "rule_of_cns"])
# Apply the filter
out = mc.functional.rules_filter(
mols=data["mol"].tolist(),
rules=rfilter,
n_jobs=-1,
progress=True,
return_idx=False,
)
legends = [f"Pass the filter={o}" for o in out]
dm.to_image(data["mol"].tolist(), legends=legends, n_cols=4, mol_size=(250, 150))
Filter by rules: 0%| | 0/8 [00:00<?, ?it/s]
complexity_filter
¶
Filter a list of compounds according to a complexity metric.
In the below example, the complexity is compared to the ones encountered on ZINC15.
data = dm.data.cdk2()
data = data.iloc[10:18]
data["mol"] = data["smiles"].apply(dm.to_mol)
# Apply the filter
out = mc.functional.complexity_filter(
mols=data["mol"].tolist(),
complexity_metric="bertz",
threshold_stats_file="zinc_15_available",
n_jobs=-1,
progress=True,
return_idx=False,
)
legends = [f"Pass the filter={o}" for o in out]
dm.to_image(data["mol"].tolist(), legends=legends, n_cols=4, mol_size=(250, 150))
Complexity Evaluation: 0%| | 0/8 [00:00<?, ?it/s]
bredt_filter
¶
Filter a list of compounds according to Bredt's rules.
smiles_list = [
"C1C2=C1C2",
"C1CC=C=CC1",
"C1C2CCCC=C12",
"C1C2=C1CCCC2", # is ok
"C1CC2=CCC1C2",
"C1CC2=CC1CC2",
"C1CC2CCC1C=C2", # is ok
"C1CC2=CCC1CC2",
]
mols = [dm.to_mol(s) for s in smiles_list]
# Apply the filter
out = mc.functional.bredt_filter(
mols=smiles_list,
n_jobs=-1,
progress=True,
return_idx=False,
)
legends = [f"Pass the filter={o}" for o in out]
dm.to_image(mols, legends=legends, n_cols=4, mol_size=(250, 150))
To mol: 0%| | 0/8 [00:00<?, ?it/s]
Filtering with catalogs: 0%| | 0/1 [00:00<?, ?it/s]
molecular_graph_filter
¶
Filter a list of compounds according to unstable molecular graph patterns. This list was obtained from observation around technically valid molecular graphs from deep generative models that are not stable.
smiles_list = [
"C1=CC(=C(C=C1C(=O)NC2=NC=CC(=C2)C(F)(F)F)F)C3=C4C(=NC=CN4C(=N3)C56C7C8C5C9C6C7C89C(=O)O)N",
"C[C@@]1([C@@H]2[C@]3(C[C@]45[C@]2(C4)O[C@]5([C@@H]3O)C)C=CC1=O)CCC(=O)NC6=C(C=CC(=C6O)C(=O)O)O",
"CCC1=C(C(C1CCCC23C45C2(C34C6=C7CCC7=C6)C(C5C)C)C)C",
"c1ccccc1N2C(=O)C(N(C)C)=C(C)N2C",
"O=C(O)C(Oc(c(cc(c1)Cl)C)c1)C",
"OCCN4CCN(CCCN2c1ccccc1Sc3ccc(Cl)cc23)CC4",
"CN(C)CCCN2c1ccccc1Sc3ccc(Cl)cc23",
"ClC4=C(Cl)C5(Cl)C3C1CC(C2OC12)C3C4(Cl)C5(Cl)Cl",
]
data = pd.DataFrame({"smiles": smiles_list})
data["mol"] = data["smiles"].apply(dm.to_mol)
# Apply the filter
out = mc.functional.molecular_graph_filter(
mols=data["mol"].tolist(),
max_severity=5,
n_jobs=-1,
progress=True,
return_idx=False,
)
legends = [f"Pass the filter={o}" for o in out]
dm.to_image(data["mol"].tolist(), legends=legends, n_cols=4, mol_size=(250, 150))
Match: 0%| | 0/8 [00:00<?, ?it/s]
lilly_demerit_filter
¶
Run the Eli Lilly's demerit filter on current list of molecules.
data = dm.data.cdk2()
data = data.iloc[2:10]
data["mol"] = data["smiles"].apply(dm.to_mol)
# Apply the filter
out = mc.functional.lilly_demerit_filter(
mols=data["mol"].tolist(),
n_jobs=-1,
progress=True,
return_idx=False,
)
legends = [f"Pass the filter={o}" for o in out]
dm.to_image(data["mol"].tolist(), legends=legends, n_cols=4, mol_size=(250, 150))
protecting_groups_filter
¶
Filter a list of compounds according to match to known protecting groups.
data = dm.data.solubility()
data = data.sample(n=8, random_state=19)
data["mol"] = data["smiles"].apply(dm.to_mol)
# Apply the filter
out = mc.functional.protecting_groups_filter(
mols=data["mol"].tolist(),
protecting_groups=[
"fmoc",
"tert-butoxymethyl",
"tert-butyl carbamate",
"tert-butyloxycarbonyl",
],
n_jobs=-1,
progress=True,
return_idx=False,
)
legends = [f"Pass the filter={o}" for o in out]
dm.to_image(data["mol"].tolist(), legends=legends, n_cols=4, mol_size=(250, 150))
Checking protecting groups: 0%| | 0/8 [00:00<?, ?it/s]
-- The End :-)